Reductions in Impingement Mortality Resulting from Enhancements to Ristroph Traveling Screens at an Estuarine Cooling Water Intake Structure

Kenneth A. Strait, John H. Balletto, L. Raymond Tuttle, Shawn L. Shotzberger

A Symposium on Cooling Water Intake Technologies to Protect Aquatic Organisms

May 6-7, 2003

Salem Generating Station

- Delaware Estuary
 Steam Electric Plant
- Approx. 30 miles SW of Philadelphia
- Each unit rated at 1,162 Mwe.
- Commercial Operation
 - Unit 1: 1977
 - Unit 2: 1981

Cooling Water Intake Structure (CWIS)

- 12 Intake Bays
- Monthly Average Flow of 3,024 MGD
- Approach Velocity
 - 1.0 ft/s at low tide
 - 0.87 ft/s at high tide

CWIS Traveling Screens

- 12 screens (one per intake bay)
- Continuously rotating to remove detritus and marine life
- Modified in 1996 to improve efficacy:
 - Enhanced bucket profile
 - Lighter construction
 - Finer Smooth-Tex ™ Mesh (0.25" x 0.5" vs. 0.375" x 0.375" with old screens)
 - Modified spray wash configuration

Modified Screens Bucket Profile & Screen Mesh

Salem CWIS Fish Return System

Top Right: Fish spray and flap seals

Below: Fish and debris return troughs

Bottom Right: Fish return trough terminus

Salem CWIS Fish Collection & Holding Facilities

Impingement Abundance Sampling in North Fish Counting Pool

Temporary Latent Impingement Mortality (LIM) Holding Tank

1995 Impingement Mortality Direct Comparison Study - Methods

- Unit 2 modified with improved Ristroph screens, Unit 1 retained original screens
- Discharge split to north (U1) and south (U2) pools in 4 to 6 minute samples for comparison
- LIM Samples collected on 19 dates between June 20 and August 24, 1995
- Sampled entire tidal cycle
- Weakfish, bay anchovy and spot targeted for study
- Fish held in six 100 gallon tanks
- Survival fraction observed after 12, 24, and 48 hours

Summary of Results from the 1995 Direct Comparison Study - Weakfish

Original Screens versus Modified Screens

	Original Screens		Modified Screens	
MONTH	Number of fish examined	Impingement Mortality Rate	Number of fish examined	Impingement Mortality Rate
June	111	33%	366	17%
July	367	31%	473	18%
August	553	51%	623	25%
TOTAL	1031	38%	1462	20%

1997–2000 Impingement Mortality Study - Methods

- Modified Ristroph screen improvements completed for both units
- Discharge combined and directed in the direction of the tide
- Sampled entire tidal cycle
- Study targeted weakfish, bay anchovy, spot, alewife, blueback herring, American shad, striped bass, white perch and Atlantic croaker
- Fish held in six 100 gallon tanks
- Survival fraction observed after 12, 24, and 48 hours

Mortality Rate Ranking (Lowest to Highest) for RIS Species Based on 1997 through 2000 Data

RANK	SPECIES	ANNUAL	MINIMUM	MAXIMUM	TOTAL
IXAINIX	SPECIES				_
		MORTALITY	(%)	(%)	NUMBER
		* (%)			SAMPLED
1	Striped Bass	4.66	2.10	6.87	1,505
2	White Perch	6.29	0.95	33.63	25,757
3	Spot	6.67			132
4	Atlantic Croaker	22.64	3.86	44.86	35,186
5	American Shad	23.95			40
6	Blueback Herring	27.39	14.11	43.38	4,150
7	Alewife	39.15	17.41	43.01	551
8	Weakfish	47.77	10.28	65.25	26,400
9	Bay Anchovy	58.02	27.48	83.97	10,235
1 * • • •					

BLUEBACK HERRING AND ALEWIFE

ATLANTIC CROAKER

BAY ANCHOVY

WHITE PERCH

Fish Collection Pool and "End-of-Pipe" Evaluation Methods

- Fish collection pool and "End-of-Pipe" models constructed off-site
- Tests conducted with alewife and weakfish
- Testing performed in both models as well as in the Salem fish collection pools
- Marked control fish included in each replicate
- Survival fraction enumerated after 12, 24 and 48 hours

"End-of-Pipe" Model 6-foot drop configuration

Estimates of survival (standard error) from pooled replicates by treatment with alewife for the end-of-pipe experiment

Treatment	Immediate	48 Hours
Existing Configuration	0.9965 (0.0035)	0.9964 (0.0059)
1.3-ft Freefall	1.0 (N/A)	1.0140 (0.0098)
6-ft Freefall	1.0 (N/A)	1.0034 (0.0034)

Note: Values > 1 indicate higher control mortality

Fish Collection Pool Model

Estimates of survival (standard error) from pooled replicates by treatment for the fish collection pool experiment (Model)

Treatment	Immediate	48 Hours
3 cfs / 25 cm of cushion water	1.0 (N/A)	1.16434 (0.0058)
3 cfs / 50 cm of cushion water	1.0 (N/A)	1.0315 (0.0379)

Note: Values > 1 indicate higher control mortality

Estimates of survival (standard error) from pooled replicates by treatment for the fish collection pool experiment (Station)

Treatment	Immediate	48 Hours
3 cfs / 25 cm of cushion water	1.0034 (0.0058)	1.0034 (0.0058)
3 cfs / 50 cm of cushion water	1.0067 (0.0047)	1.0067 (0.0047)
13 cfs / 25 cm of cushion water	0.9966 (0.0034)	0.9966 (0.0034)

Note: Values higher > 1 indicate higher control mortality

Summary

- Properly designed traveling water screen/fish return systems can effectively reduce impingement mortality rates
- Impingement mortality is variable & can be affected by fish distribution, condition factor, temperature and salinity
- Properly designed fish collection, counting and return systems do not contribute to reported impingement mortality rates